Acta Cryst. (1969). B25, 2342

Strukturbestimmungen an Bor–Stickstoff-Verbindungen. IV. Die Kristall- und Molekularstruktur von Hexakis(trimethylsilyl)-2,4-diamino-1,3,2,4-diazadiboretidin

VON HEINZ HESS

Institut für Anorganische Chemie der Universität Stuttgart, Schellingstr. 26, 7 Stuttgart, Deutschland

(Eingegangen am 30. Juli 1968 und wiedereingereicht am 7. Januar 1969)

The title compound, a four-membered boron-nitrogen ring system, was investigated by X-ray methods. The crystals are monoclinic, space group $P2_1/a$ with $a=22\cdot11$, $b=14\cdot96$, $c=10\cdot93$ Å, $\beta=108\cdot6^{\circ}$, and four molecules in the unit cell. The structure determination is based on 3449 reflexion values, which were mainly obtained with the aid of an automatic diffractometer. Three-dimensional Patterson and Fourier syntheses were used for the structure determination. The structure was refined by least squares. The proposed structure could be confirmed. The four-membered ring is planar, within the limits of accuracy of the determination, and the substituents on the N atoms are also arranged in a plane. The Si atoms attached to the exocyclic N atoms lie, however, not in the plane of the four-membered ring, but almost perpendicular to it. This can be attributed to steric factors. The following average bond lengths were found: B-N 1.45, N-Si 1.75, Si-C 1.87 Å. The shortness of the exocyclic B-N bond is surprising since the substituent on the B and N atoms are arranged nearly perpendicularly to one another, not allowing the formation of a classical π -bond.

Einleitung

Hexakis(trimethylsilyl)-2,4-diamino-1,3,2,4-diazadiboretidin wurde zuerst von Geymayer, Rochow & Wannagat (1964) und von Russ & McDiarmid (1964) beschrieben. Die Verbindung enthält einen Vierring aus alternierenden B- und N-Atomen, die aber im Gegensatz zu den entsprechenden Atomen in den Cycloborazanen dreibindig sind, ferner sind an die B-Atome je ein exocyclisches N-Atom gebunden. Dadurch ergeben sich verschiedene Möglichkeiten der Ausbildung von Doppelbindungen, über deren Realisierung von vorneherein wenig gesagt werden kann. Eine röntgenographische Untersuchung schien uns daher angebracht.

Experimentelles

Die Verbindung wurde uns freundlicherweise von Herrn Dr Geymayer zur Verfügung gestellt. Während Sublimation und Umkristallisation aus Benzol keine brauchbaren Kristalle lieferten, erwies sich Petroläther als Lösungsmittel erfolgreich. Die Kristalldaten wurden wie üblich aus Dreh-, Präzessions- und mit KCl geeichten Weissenberg-Aufnahmen ermittelt. Zur Bestimmung der Reflexintensitäten wurden zunächst integrierte Weissenberg-Aufnahmen um c, 0.-8. Schichtlinie, hergestellt. Während ihrer Photometrierung ergab sich dann die Möglichkeit, Intensitätsmessungen am automatischen Diffraktometer des Mineralogischen Instituts der Universität Marburg durchzuführen. Bei diesem Gerät, einem Zweikreis-Goniometer nach dem Weissenberg-Prinzip, handelt es sich um eine Eigenkonstruktion des genannten Instituts. An das Gerät war eine Rechenanlage Z 25 der Firma Zuse K.G. angeschlossen, das dessen Steuerung und die Verarbeitung der Messwerte in F_o -Werte vornahm. Ausserdem berechnete sie die Gewichte für die spätere Verfeinerung. Die Messungen wurden mit gefilterter Cu Ka-Strahlung gemacht. Sämtliche Reflexe bis zu einem Streuwinkel von 50° wurden erfasst. Ausserhalb dieses Bereiches waren nur noch wenige Reflexe von messbarer Intensität vorhanden. Eine Absorptionskorrektur wurde nicht vorgenommen. Nach der Zusammenfassung der symmetriegleichen Reflexe lagen insgesamt 3449 unabhängige Reflexdaten vor, davon 1091 mit dem Wert $F_o=0$. Daneben standen noch 856 Photometerdaten zur Verfügung, die jedoch nicht zur Strukturaufklärung, sondern nur zu Korrekturzwecken verwendet wurden.

Die weiteren Rechnungen wurden mit Hilfe der Rechenanlage Telefunken TR 4 des Recheninstituts der Universität Stuttgart ausgeführt unter Anwendung eines institutseigenen Programmsystems (Autoren: K. Krogmann, R. Mattes, H. Thurn & H. Hess). Als Atomformfaktoren wurden die Werte von Hanson, Herman, Lea & Skillman (1964) verwendet.

Kristalldaten

Die Kristalle sind monoklin und haben die Gitterkonstanten $a=22,11\pm0,02$, $b=14,96\pm0,02$, $c=10,93\pm0,02$ Å, $\beta=108,6\pm0,2^{\circ}$. Das Volumen der Elementarzelle beträgt 3426 Å³. Die experimentell nach der Schwebemethode mit einem Gemisch Xylol/CCl₄ ermittelte Dichte beträgt 1,004 g.cm⁻³, daraus ergeben sich 4 Moleküle pro Elementarzelle ($d_{ront}=1,002$ g.cm⁻³). Die systematischen Auslöschungen der Reflexe führen eindeutig zu der Raumgruppe $P2_1/a$. Da die allgemeine Lage in dieser Raumgruppe vierzählig ist, befindet sich ein Molekül in der asymmetrischen Einheit, das bedeutet, dass sich, von der Kristallsymmetrie her gesehen, keine Rückschlüsse auf die Molekularsymmetrie ziehen lassen.

Strukturbestimmung

Ausgangspunkt der Strukturbestimmung bildete die Patterson-Funktion. Bei ihrer Interpretation traten erhebliche Schwierigkeiten auf, einmal wegen des Fehlens eines ausgeprägten Schweratoms, vor allem aber wegen des Vorhandenseins einer ganzen Reihe von Atompaaren mit annähernd gleichen v-Koordinaten, was eine Lösung auf der Basis von Harkerschnitten und -linien unmöglich machte. Es gelang jedoch schliesslich, nach einer Reihe von Superpositionen und einer sorgfältigen Analyse der stärksten Vektoren die Lagen der 6 Si-Atome zu gewinnen, und, davon ausgehend, auch die der im Innern des Moleküls liegenden B- und N-Atome. Eine Fourier-Synthese, deren Vorzeichen einer die bekannten Atome einschliessenden Strukturfaktorrechnung (R = 0,39) entnommen wurden, lieferte weiter die Koordinaten der peripheren C-Atome. Alle Atome wurden der allgemeinen Punktlage (e) gefunden.

Die Verfeinerung nach der Methode der kleinsten Quadrate musste wegen der grossen Zahl der Parameter abschnittsweise vorgenommen werden. In einem Rechengang wurden jeweils 40 bis 108 Parameter gleichzeitig variiert. Nach 9 Rechengängen mit isotropen und 17 Rechengängen mit anisotropen Temperaturfaktoren waren *R*-Werte von 14,9 bzw. 10,6% erreicht.

Eine sich anschliessende Abstandsrechnung ergab eine relativ hohe Variationsbreite des Si-C-Abstandes (0,15 Å), die mit den Standardabweichungen nicht im Einklang stand. Auf Grund der bei der Strukturbestimmung des Tris-1,3,5-(dimethylamino)-1,3,5-triboracyclohexans (vergl. vorstehende Arbeit) gemachten Erfahrungen wurden nunmehr auch hier die Wasserstoff-Atome in die Rechnung eingesetzt. Da sie in der Differenz-Fourier-Synthese nur als sehr diffuse Peaks zu erkennen waren, wurde ihre Lage unter der Annahme einer Bindungslänge C-H von 1,05 Å, der Tetraederkoordination am Kohlenstoff-Atom und einer Konformation 'auf Lücke' berechnet. Um die Rechenzeit in vernünftigen Grenzen zu halten, konnte die weitere Verfeinerung, nachdem 84 Atome statt 30 in der asymmetrischen Einheit vorhanden waren, nur mit isotropen Temperaturfaktoren durchgeführt werden. Bei den nachfolgenden Rechengängen (3 Zyklen), die die Koordinaten und die Temperaturfaktoren der Si-, N-, B- und C-Atome umfassten, kamen tatsächlich noch Koordinatenverschiebungen bis zum Fünffachen der Standardabweichung vor. die Variationsbreite der Si-C-Abstände schrumpfte auf die Hälfte zusammen. Eine Verfeinerung der Wasserstoff-Atome selbst war aus Gründen der Rechenzeit nicht vertretbar. Eine zum Abschluss ausgeführte Strukturfaktorrechnung, bei der die Koordinaten aus der letzten Verfeinerung und die zuletzt erhaltenen anisotropen Temperaturfaktoren eingesetzt wurden, brachte einen R-Wert von 8,6%. Die Ergebnisse der Verfeinerung sind in den Tabellen 1-3 enthalten.

Fig. 1. Atomabstände (in Å. Standardabweichungen: B-N 0,015, N-Si 0,010, Si-C 0,020).

Tabelle 1. Atomkoordinaten

(Standardabweichungen in Klammern, bezogen auf die letzte angegebene Dezimale.)

	x/a	y/b	z/c	
Si(1)	0.3902 (1)	0,2315 (2)	0,3540 (3)	
Si(2)	0,5868 (1)	0,3386 (2)	0,4477 (3)	
Si(3) ·	0,5968 (1)	0,1373 (2)	0,3839 (3)	
Si(4)	0,5399 (1)	0,2768 (2)	0,0068 (3)	
Si(5)	0,3350 (1)	0,1757 (2)	-0,0936 (3)	
Si(6)	0,3220 (1)	0,3715 (2)	-0,0133 (3)	Si(1)
N(1)	0,3623 (3)	0,2681 (4)	0,0056 (7)	Si(1)
N(2)	0,5584 (3)	0,2489 (4)	0,3560 (7)	Si(2)
N(3)	0,4871 (3)	0,2577 (4)	0,1112 (7)	Si(3)
N(4)	0,4332 (3)	0,2512 (4)	0,2488 (7)	Si(5)
B(1)	0,4204 (4)	0,2600 (6)	0,1119 (11)	Si(6)
B(2)	0,5000 (4)	0,2497 (6)	0,2490 (11)	N(1)
C(1)	0,3165 (5)	0,1678 (7)	0,2716 (12)	N(2)
C(2)	0,3668 (5)	0,3391 (8)	0,4175 (13)	N(3)
C(3)	0,4384 (5)	0,1629 (8)	0,4934 (13)	N(4)
C(4)	0,5441 (5)	0,4379 (7)	0,3562 (12)	B(1)
C(5)	0,5738 (5)	0,3396 (8)	0,6053 (13)	$\mathbf{B}(2)$
C(6)	0,6765 (5)	0,3513 (8)	0,4823 (12)	C
C(7)	0,5397 (5)	0,0522 (7)	0,2891 (12)	C
C(8)	0,6205 (5)	0,1104 (8)	0,5613 (13)	C(3)
C(9)	0,6703 (5)	0,1318 (8)	0,3351 (13)	C(4)
C(10)	0,6090 (4)	0,3251 (7)	0,0937 (11)	C(5)
C(11)	0,5428 (5)	0,1686 (7)	-0,0714 (12)	CIG
C(12)	0,4864 (4)	0,3592 (7)	-0,1204 (11)	C(0)
C(13)	0,3794 (4)	0,0745 (6)	-0,0146 (11)	C(n)
C(14)	0,3467 (5)	0,1858 (7)	-0,2515 (12)	
C(15)	0,2461 (5)	0,1582 (7)	-0,1260 (12)	C(3)
C(16)	0,3760 (4)	0,4562 (7)	0,0923 (11)	C(10)
C(17)	0,2999 (5)	0,4097 (7)	-0,1843 (13)	C(12)
C(18)	0,2481 (5)	0,3689 (8)	0,0343 (13)	C(12)
				C(14)
_				ULTI

Beschreibung und Diskussion der Struktur

Der bisher vorliegende Strukturvorschlag eines ebenen Vierrings konnte bestätigt werden. Aus den Fig. 1 und 2 und der Tabelle 4 ist der Bau des Moleküls zu ersehen. Die Bindungslängen innerhalb des Rings sind paarweise etwas verschieden (1,440 und 1,477 Å),

Tabelle 2. Thermische Parameter

Die β -Werte sind mit 10⁴ multipliziert.

В	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
4,28	23	65	73	-3	27	0
4.59	19	60	77	-5	3	-15
4.52	21	50	102	9	4	15
3,43	16	53	64	-2	17	9
3,85	17	52	77	-7	7	-10
4,34	16	44	141	6	8	14
2,86	11	37	60	0	4	9
3.29	12	50	45	-2	-5	2
2.70	16	45	22	2	12	4
3.03	15	40	62	-2	17	0
2.48	Ì5	21	65	-3	21	2
2,49	22	12	121	0	31	-5
7.46	28	99	155	- 30	44	-15
6.39	53	62	190	8	70	-23
7,72	40	92	124	15	30	57
6,50	38	34	208	-3	-4	-5
7,69	47	80	85	- 8	16	-24
6,96	14	105	263	-15	-17	-43
6,73	38	40	166	-3	7	-13
7,33	43	71	126	13	-13	43
7,41	27	84	307	26	60	47
5,54	15	82	152	-17	17	1
6,64	54	63	17 2	1	75	-41
5,49	30	63	120	6	31	49
5,33	29	29	201	3	7	-2
6,28	39	86	71	-1	24	-4
5,97	9	88	179	-16	8	-12
5,56	26	32	236	-2	18	-27
7,25	45	78	146	14	-6	54
7,36	15	71	445	10	60	-12

C(15) C(16)

C(17)

C(18)

Fig.2. Molekularstruktur. Blickrichtung längs der B-B-Achse (schematisch).

jedoch beträgt die Abweichung vom Mittelwert nur wenig mehr als die Standardabweichung, so dass man die Unterschiede kaum als bedeutsam ansehen kann. Die Ringwinkel an den N-Atomen sind mit einem Mittelwert von 82,1° deutlich kleiner als diejenigen an den B-Atomen mit einem Mittelwert von $97,9^{\circ}$. Somit resultiert ein recht kurzer B...B-Abstand von 1,92 Å. Die Koordination um die B-Atome ist exakt eben, ebenso die um die exocyclischen N-Atome, bei den Ring-N-Atomen ist sie jedoch schwach pyramidal. Der

Tabelle 3. Beobachtete und berechnete Strukturfaktore

Die einzelnen Spalten geben: h, $10F_o$, $10F_c$ an. Reflexe, die innerhalb des Bereiches von $\theta = 50^\circ$ für Cu K α -Strahlung liegen und nicht beobachtet wurden, sind in der Tabelle nicht aufgeführt; sie sind jedoch bei der Verfeinerung berücksichtigt worden.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 & 0 & 0 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
---	--	--	--	---	--

Table 3 (fort.)

12 213 199 13 253 253 14 258 321. 15 137 -152 16 123 30 17 118 -175 18 21/ 259 19 181 149	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 161 203 H 12 3 5 3.09 -3.04 1 91 -76 2 120 -143 3 239 272	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 72 134 17 143 -154 16 121 113 19 89 -171 23 194 222 H 7 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 273 203 9 1n0 156 11 54 34 12 216 202 13 134 122 14 94 116 H 3 =5	4 715 698 5 87 98 6 379 337 7 68 92 8 130 -146 19 7 -5	0 64 +116 H 13 -5 3 68 59 4 111 143 5 54 175 6 84 -96	4 38c -415 5 545 510 6 410 -458 7 95 113 κ 4 -6 1 113 95 7 95
21 206 220 H 4 3 0 493 429 1 364 -282 2 1005 1971 3 323 -333 5 243 244	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 107 114 8 75 174 1 12 -3 1 56 40 2 135 143 6 137 -140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 176 -174 5 117 179 e 261 -301 7 105 94 8 153 163 16 139 166 12 110 -130	1 584 -547 2 77 71 4 155 -161 5 703 -742 6 375 376 7 263 -246 8 611 635 9 1672 1115	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0 6 4 240 261 8 71 -91 10 121 -167 12 431 -365 H 0 -6	5 118 -88 5 87 100 6 134 175 7 143 -165 8 576 597 9 138 154 11 575 604 12 579 -581 14 67 -65
6 431 = 375 7 172 229 10 273 - 296 11 393 426 12 46 26 13 200 215 14 384 413 15 79 -72	H 8 3 0 539 536 1 219 133 2 193 -224 3 552 572 4 505 -520	a 129 156 9 149 173 10 146 -146 11 257 273 12 230 -276 H 13 3	9 249 326 13 194 231 12 612 613 14 190 230 15 147 149 16 121 -142 	H 7 -4 1 59 -53 2 215 -109 3 454 -457 4 479 441 5 137 -156	п 69 62 1 79 24 2 162 -129 4 61 113 к 13 -4	11 187 191 12 183 160 13 237 -272 17 113 -146 18 254 210 19 274 288 71 360 427	12 68 145 13 293 311 14 147 -177 15 64 60 16 126 118 17 137 207 H. 5 5	2 107 -84 6 331 298 8 44 81 12 499 -516 14 523 -557 16 51 113 25 281 -266	15 182 -199 K 5 6 0 113 -172 2 110 -133 4 326 -297 5 211 279
16 116 -71 × 4 •3 1 606 ~616 2 161 165 3 176 153 7 173 168	5 2/5 319 8 64 -67 9 64 63 10 64 97 11 176 183 12 188 223 13 198 231 14 114 -127	0 123 160 3 174 147 4 99 120 5 65 66 H 13 -3 3 186 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 62 - 63 10 416 476 11 436 448 16 153 176 17 153 178 18 76 - 57 н 3 4	1 63 122 2 155 -184 4 150 145 5 146 -147 6 65 69 8 46 79 9 143 183	H 4 5 (181 -1°6 3 77 -93 4 190 211 5 155 200 6 436 490 6 190 175	0 479 476 1 141 165 3 113 71 5 111 147 6 91 41 7 157 158 6 215 -211	H 1 6 G 116 -178 1 134 164 2 67 115 4 121 104 5 301 294 6 162 -172	6 264 -284 7 246 240 6 296 330 9 253 -220 11 145 -162 H 5 -6
8 203 607 9 532 537 10 46 -72 12 1054 -1138 14 431 -440 15 228 275 16 91 -56 20 46 140 21 72 71	H 83 1 518 536 2 176 -185 3 153 160 4 72 -85 5 94 124 6 174 123	4 242 243 5 121 119 9 99 -121 15 156 255 	11 7.67 -7.74 12 817 822 13 427 453 14 428 453 15 734 786 10 229 -242 18 69 -133	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 216 296 2 174 -105 4 77 -99 8 133 252 10 261 256 12 457 -551 12 457 -551	11 231 247 12 404 -449 κ 4 -5 1 954 -1032 2 181 270 3 135 - 67	11 91 -82 n 8 -5 1 248 372 2 277 -205 3 192 197 4 463 -470	7 233 -228 8 726 -700 9 360 -349 10 113 129 11 107 110 12 241 253 H 1 -6	2 91 -167 3 213 144 4 873 -962 5 236 316 6 667 -715 7 143 145 8 251 -274 9 51 -116
H 5 3 0 123 -139 1 235 247 2 223 218 4 255 -257 5 88 -172	8 198 -248 9 127 -162 11 296 295 13 367 365 14 363 -381 15 127 -169 17 79 -82	H 14 *3 2 75 07 H 0 4 6 <u>1</u> 93 -217	H 4 4 J 94 87 1 12303 2 563 507 3 296 268 5 623 641 6 336373	10 182 -228 13 n1 170 H 8 -4 2 330 -326 3 202 -202	H C -5 2 262 317 6 805 -654 8 171 -213 10 254 291 14 204 254	4 272 255 5 8C5 796 7 162 177 11 211 254 12 130 151 15 420 447 16 344 -376 17 223 233	6 91 99 8 126 -165 11 205 192 12 250 265 13 527 569 14 370 -376 10 139 -103 17 227 -250	3 458 -477 5 319 271 6 586 +600 7 425 468 8 272 -366 13 136 -173 14 568 -635	10 110 56 11 67 -73 12 196 -212 13 175 275 14 126 -132 15 138 -192 17 300 -289
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H 9 3 D 250 -232 3 111 86 4 99 -119 5 474 539 6 197 179 8 75 80 9 205 -195	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 472 5-1 8 361 377 7 162 -163 4 4 -4 1 133 -138 2 187 177 3 86 113	4 133 119 5 193 214 6 493 482 7 532 553 4 253 -233 9 242 249 10 339 -375 11 148 -251 14 135 -134	16 291 -293 18 473 -593 20 54 -86 1 1 5 5 126 159 2 369 -358 3 294 -273	18 102 -100 19 262 -225 N 5 5 0 272 328 1 465 469 2 373 341 3 160 169	H 9 5 1 59 H9 2 141 -176 3 113 176 4 446 -463 5 80 119 7 163 -187	15 556 -356 16 246 -233 20 121 118 H 2 6 1 684 699 2 325 -313 3 575 -542	C 580 ~586 1 236 ~267 2 216 196 4 529 605 6 76 71 11 158 ~158
2 85 -69 3 372 170 4 264 284 5 402 408 6 235 -229 7 251 -266 8 483 -436	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 248 =246 6 836 877 8 186 172 10 631 =659 12 462 =511 16 79 =167 18 291 =248	4 446 476 5 272 219 6 297 352 7 310 320 8 131 125 9 365 326 13 277 -264 11 294 312	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 842 +822 5 413 373 6 168 -177 7 68 92 9 174 -150 12 268 -313 13 143 -124 14 503 -503	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 159 151 1 9 -5 4 266 -275 7 242 405 8 294 334 9 317 331 10 269 -280	4 47 76 5 671 -669 6 337 359 9 113 -111 10 87 75 11 104 87 12 246 238 13 220 227	h 6 -6 3 177 -163 4 180 191 5 166 -244 6 273 -200 7 291 -295 8 175 -152
9 107 -118 12 176 -201 14 219 -249 17 315 -354 19 239 -258 H 6 3	0 213 4210 7 176 210 8 107 91 11 60 -80 12 151 169 14 178 -230 15 241 -282 16 212 -199 17 185 -189	23 147 •178 H 1 4 1 266 287 2 315 269 3 265 -263 4 218 -237 4 0 14	12 143 -85 14 238 186 15 325 391 16 232 -168 13 394 -465 17 3ma -28a d 5 4	4 51 -76 6 1r2 -102 9 100 141 10 167 -165 - 0 -4 1 524 532 2 290 240	H 1 -5 1 297 269 2 207 -259 4 121 -72 5 483 525 6 672 -693 4 195 -101	H 5 -5 1 174 233 4 195 177 5 371 374 6 168 112 7 295 271 8 425 -446 9 145 -175	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H 2 -6 1 67 -179 2 107 125 3 107 193 6 299 -293 7 563 569 8 469 -564	10 227 224 11 116 -173 12 245 248 13 265 -252 14 51 70 17 91 -170 19 104 -141
1 874 8847 2 912 8847 3 390 349 4 378 357 5 85 148 6 365 348 7 138 178 8 199 8 191 8 191 8 191 8 191 8 191 8 191 8 191 8 191 8 191 9	H 10 3 0 158 -188 1 400 442 2 189 214 3 352 -361 4 154 171	8 537 -575 9 167 -145 15 434 -397 11 264 255 14 246 -258 15 123 -166 16 193 -198	0 925 -886 1 179 177 2 635 -669 3 141 273 4 175 170 7 268 293 3 328 351 10 207 -197	3 147 142 4 69 -68 5 72 -112 6 102 92 10 447 -466 11 176 -205 12 69 -36 13 180 -108	9 379 -913 13 213 232 14 232 -169 18 371 -331 19 123 -171 20 151 -143 21 194 -109	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 13/ -188 × 10 -5 4 261 263 5 205 -196 6 208 244 7 179 -188	9 460 -485 11 922 -936 12 626 631 13 138 173 14 311 279 15 246 233 19 76 70 20 156 169	H 7 6 U 182 225 3 118 08 4 277 313 7 110 -151 8 121 -144 10 145 129
9 85 78 10 322 314 11 251 -248 12 287 -297 13 364 -400 14 211 -231 15 233 268 16 98 91	5 308 -209 8 99 -122 9 215 -188 10 156 -148 12 114 152 H 15 -3	H 1 -4 1 521 -470 2 53/ 577 3 452 -527 4 243 206 5 245 200 6 174 -165	11 381 -376 12 656 -657 4 5 -4 1 321 309 2 107 -132 3 224 239	1.6 61 -110 17 61 -41 H 10 4 U 174 190 1 155 207 3 284 -286	H 2 5 1 103 93 2 .59 32 3 135 154 6 143 -133 7 116 97 6 261 -253 2 464 -263	19 143 -175 20 59 69 H 6 5 0 379 -328 1 306 -263 3 113 -122 5 277 -272	8 139 157 11 77 -95 12 84 -129 13 263 -200 15 128 -154 H 11 5 1	21 67 -83 H 3 6 G 129 131 1 256 -300 2 87 150 3 101 -91	H 7 -6 1 256 -260 2 338 -374 3 707 -667 4 792 616 5 308 -203 6 693 737
H 6 =3 1 202 =171 2 133 109 3 224 =234 7 164 =163 8 331 =348 9 60 47	2 107 -99 3 68 87 5 167 -296 7 104 129 8 198 243 9 56 -63 10 200 190 1 425 -442	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 94 -117 8 114 151 9 275 177 13 65 177 13 65 -87 12 643 -641 13 276 -315 14 254 -261 15 291 -282	4 107 -109 5 125 -100 H 10 -4 10 -83 - 09 12 -01 105 15 -94 -135	10 103 226 11 336 -335 12 532 569 13 192 215 14 197 216 H 2 -5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 518 520 6 450 458 6 450 458 9 546 428 10 216 -229 11 95 -68 N 3 -6	7 160 161 8 113 -114 9 171 239 13 251 -298 15 113 -150 16 180 207 17 325 314
12 622 625 13 611 +625 14 561 563 18 75 -150 20 64 100 H 7 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H 2 4 1 162 221 2 193 -212 3 673 -669 4 635 -586 5 364 -353	17 94 -134 -1 6 4 0 258 -263 1 153 -184 3 454 473 4 402 423 5 214 -235	H 11 4 h 129 -169 1 145 -176 3 114 206 7 51 48 9 143 -159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H 6 -5 1 244 -298 2 353 315 3 .400 -333 4 169 219 5 207 -213 6 133 -161 97 -151	2 59 54 5 113 -128 6 119 139 7 230 -290 9 84 111 10 276 -325 11 256 288 12 160 -213	1 67 -68 2 261 245 3 791 879 4 375 445 5 219 -229 6 552 546 7 624 -639 3 382 467	H 8 6 U 219 275 1 199 232 2 437 -475 4 284 -284 6 156 233 H 8 -6
U 131 133 1 104 -126 2 289 -292 3 280 -259 4 452 484 6 457 437 7 219 -214 8 299 -282 16 181 -207	A 118 134 9 147 133 H 11 *3 2 55 -45 3 127 169 4 142 175	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 211 -215 6 55 -10 7 492 -477 8 353 -376 10 65 83 H 5 -4 1 127 133	1 1 -4 1 368 -359 3 50 126 4 306 -306 5 221 254 6 121 -158 12 150 163 13 94 103	13 447 400 14 116 -131 15 348 -15 16 321 373 17 325 -340 18 369 418 19 139 85 H 3 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 126 135 H 12 5 U 205 -243 1 97 231 H 12 +5	10 76 -131 12 281 331 13 134 165 14 377 372 15 484 526 16 62 73 17 87 1°2 r 4 6	3 223 225 4 131 -141 5 186 233 6 355 350 7 196 126 6 121 -147 10 365 -376
11 127 158 12 32 127 15 65 96 H 7 -3	5 162 -145 6 321 329 7 363 -384 9 127 137 13 235 -254	3 406 -438 4 79 75 5 135 151 6 432 -479 7 119 129	3 33 48 4 446 -445 6 371 -385 7 333 -401 9 304 -307 10 273 255	14 125 184 H 12 4 U 67 -55	2 190 128 3 623 627 5 105 -115 5 661 600 7 195 -237	H 7 5 0 343 -321 1 510 -463 2 253 -273 3 466 -510	5 22/ 232 6 264 -311 7 211 203 H 13 5	C 272 311 1 56m -596 2 386 398 3 51 75	13 233 238 14 141 -152 15 125 157

mittlere Winkel zwischen der Ringebene und den N_{ring} -Si-Bindungen beträgt 173°. Die an die exocyclischen N-Atome gebundenen Si-Atome befinden sich nicht in der Ebene des Vierrings, sondern sind um etwa 75° aus dieser herausgedreht. Dies ist wegen der Raumerfüllung der SiMe₃-Gruppen erforderlich.

Während die Länge der B-N-Bindungen im Ring mit einem Mittelwert von 1,459 Å durchaus etwa dem Erwartungswert entspricht – sie ist etwas grösser als in den Borazolen, was wegen der Ringspannung verständlich ist –, sind die exocyclischen B–N-Bindungen mit 1,44 Å im Mittel unerwartet kurz und lassen auf beträchtliche π -Bindungsanteile schliessen. Dies ist vor allem deshalb überraschend, weil es wegen der Stellung der Substituenten nicht möglich ist, eine π -Bindung dadurch zu formulieren, dass man das freie ElektronenTable 3 (fort.)

ноб	·· · · · 7	18 371 361	4 115 144	13 196 225	0 778 772	1 117 116	0 332 -351	- 17 -8	5 252 241
2 62 113 4 51 -176 6 83 128 8 76 -110	2 75 94 4 525 628 6 692 723 8 59 7	19 134 153 20 253 273 4 3 7	н 5 -7 1 421 478 2 227 -269	16 83 -130 н 8 7 1 118 -156	2 326 205 6 183 169 8 176 113 H 7 - 8	2 215 -241 3 289 -276 4 65 -8 5 473 -475 6 297 364	1 237 -249 3 128 -119 × 6 -8	5 116 -134 н р 9	6 273 249 11 107 -143 12 157 164 16 157 -198
H 9 -6	10 227 -227	1 112 -134 5 575 140	3 175 173 5 59 -95	2 70 -147 3 137 -175	2 333 324	7 162 196	1 88 -44	0 565 573 2 195 213	.4 9
1 158 167	16 158 249	4 208 -246	7 233 187	4 196 178	4 258 270	H 3 HB	3 229 -265	4 143 -173	0 206 240
2 143 182	20 486 -486	10 91 45	10 175 -226	0 126 117	10 340 421	3 122 99	5 171 -181	н л - Э	3 258 252
4 262 -284	<u>• 1</u> 7	н 3-7	12 764 -876	н 8-7	14 265 -238	4 116 -111	7 116 -167	2 94 145	4 4 -9
/ 56 -108	1 134 -79	1 975 -974		6 340 383	н 1 б	7 696 -694	12 143 -151	8 292 332	1 21.2 219
5 124 -138	4 95 -153	3 316 -310	1, 1-2 -12,	8 91 109	3 166 175	10 269 311	14 171 -217	14 94 -176	11 119 139
12 43 100	8 59 87	5 121 141		10 313 -336	3 218 162	11 376 359	15 100 -83 16 128 119	-1 9	12 325 -286
.1 1/1 6	11 222 205	10 203 219	2 115 137	11 146 184	6 412 -394	H 4 8	-176	5 362 -441	459
2 145 170	н 1-7	11 107 197	5 158 -183	н 97	H 1 -8	0 325 344	0 234 -259	H 1 -9	0 157 •179
3 169 -197	1 437 411	13 185 -222 14 427 444	0 214 -250 7 246 -264	9 274 277	2 116 111	2 141 163 3 75 94	1 255 -263	1 256 250	- 5-9
H 10 -6	2 310 -341 3 91 136	15 95 F) 16 65 -P5	8 95 142	1 2°8 3°6 2 113 155	3 84 -93 4 100 98	7 125 159	4 141 142	2 300 375	1 200 160
1 158 -178 2 113 128	4 351 -384 6 144 145	17 179 142	H 6 -7	3 169 101 4 147 -153	5 84 76 6 128 155	H 4 -8	- 7 - 8	5 34 -120 6 264 -354	2 130 170 3 256 271
3 96 - A9 9 173 - 169	9 25d -273 10 61d -625	4 4 7	1 172 -172	н 9-7	7 326 352 8 151 -167	2 531 525	1 146 -174	8 113 -120 14 113 -100	6 215 -271 12 186 -154
10 166 196 11 223 -23r	12 256 -237	0 129 -180	3 192 168 4 87 -73	1 67 62	9 133 -132 10 500 -564	4 124 143	5 73 49	15 113 -94	N D Y
12 110 123	14 356 -353	5 179 147	5 112 131 6 364 -368	2 75 -75	11 192 -195	0 117 -128		н 2 ч	0 144 -153
14 62 134	17 115 -61	7 118 -115	7 374 - 379	7 99 105	H 2 A	A 61 96	0 445 134	0 422 -445 2 344 -352	2 143 -295
H 11 0	20 140 -17v	10 173 -196	266 -294	9 156 125	3 597 -614	13 173 140	1 350 335	5 574 - 376	4 6 - 5
0 117 -168	127	H 4 - 7	11 126 -140	11 112 162	1 279 276	15 2?5 -239	- d - b		3 107 5)
* 11 -0	2 8/ -79	1 165 -158	14 95 -128	13 262 -272	3 60 -63	- 5 8	1 2:3 -13?	1 214 -275	8 148 -177
2 10/ 125	5 75 66	3 2"5 -217	18 59 34	4 10 7	8 83 -126	0 126 238	3 332 244	6 217 - 525	10 111 9/
4 101 -151	8 118 -145	5 516 524	H 7 7	2 99 135	H 2 -8	4 00 -99	11 113 11"	4 49 4p	11 123 -130
5 46 -75	11 156 -151	6 336 3°1 7 464 4°7	d 461 -445	4 14 -7	1 148 -140	6 186 -251 7 173 -149	12 232 255 13 34¥ 341	12 04 75	H 7 Y
4 12 6	- 2 -7	9 1*2 -119 17 151 -153	2 21 - 257	1 8/ 114	$ 2 313 -317 \\ 3 369 334 $	n 5+ô	4 9 8	13 1/1 -131	0 176 177
C 223 -257	1 296 339	13 179 141 14 264 24d	3 239 -243 4 33 125	2 47 -91 5 73 -128	4 264 -244 5 60 -65	j 110 137	3 171 189		4 7 - 4
H 12 -6	3 186 195 4 636 -710	16 144 -105	4 7 -7	7 70 -52 9 158 -169	9 133 -157 10 223 -245	5 75 78 6 321 -334	1 237 271	n 330 330 1 133 -130	1 79 54
1 152 165 2 134 -168	5 624 -697 6 513 -563	19 297 -247 19 59 -71	1 137 119	10 83 95	11 300 -281 12 196 -253	7 241 245 5 378 -420	- 9 - 8	2 97 110	2 245 -252
5 116 -160	9 348 383 10 206 198	H 5 7	5 73 -66 7 253 -248	H 11 -7	13 162 175	9 113 151 11 213 -240	1 107 136	- 3-9	5 315 -297
5 F 7	14 196 -212	0 330 342	8 171 -270	1 224 -220	4 3 8	17 122 -178	5 249 272	1 416 -393 2 163 -184	
0 129 170	17 233 -244	1 177 155	10 335 340	н 5 8	· · · -	н 6 8	9 70 -71	3 99 -141	5 79 -P.
6 134 -110 8 65 103									0 130 144

Tabelle 4. Bindungswinkel

N(3)-B(1)-N(4)	98.0°	C(4) - Si(2) - C(5)	107.0°
N(1)-B(1)-N(3)	129.3	C(5) - Si(2) - C(6)	106.2
N(1)-B(1)-N(4)	132.7	C(6) - Si(2) - C(4)	110.1
N(3)-B(2)-N(4)	97.7	N(2) - Si(3) - C(7)	108.1
N(2)-B(2)-N(3)	132,5	N(2) - Si(3) - C(8)	109.1
N(2) - B(2) - N(4)	129,7	N(2) - Si(3) - C(9)	113.8
B(1) - N(3) - B(2)	81,9	C(7) - Si(3) - C(8)	110,1
B(1) - N(3) - Si(4)	139,4	C(8) - Si(3) - C(9)	107,6
B(2) - N(3) - Si(4)	137,9	C(9) - Si(3) - C(7)	108,0
B(1) - N(4) - B(2)	82,4	N(3) - Si(4) - C(10)	110,6
B(1) - N(4) - Si(1)	137,6	N(3) - Si(4) - C(11)	110,5
B(2) - N(4) - Si(1)	139,1	N(3)Si(4)-C(12)	109,8
B(1) - N(1) - Si(5)	118,7	C(10)-Si(4)-C(11)	108,2
B(1) - N(1) - Si(6)	117,2	C(11)-Si(4)-C(12)	110,0
Si(5) - N(1) - Si(6)	124,1	C(12)-Si(4)-C(10)	107,5
B(2) - N(2) - Si(2)	118,3	N(1) - Si(5) - C(13)	109,3
B(2) - N(2) - Si(3)	117,2	N(1) - Si(5) - C(14)	113,3
Si(2) - N(2) - Si(3)	124,5	N(1)-Si(5)-C(15)	111,0
N(4)-Si(1)-C(1)	110,1	C(13)-Si(5)-C(14)	107,0
N(4)-Si(1)-C(2)	110,4	C(14)-Si(5)-C(15)	106,5
N(4)-Si(1)-C(3)	111,7	C(15)-Si(5)-C(13)	109,7
C(1) - Si(1) - C(2)	107,4	N(1)-Si(6)-C(16)	108,8
C(2) - Si(1) - C(3)	108,4	N(1)-Si(6)-C(17)	113,8
C(3) - Si(1) - C(1)	108,7	N(1) - Si(6) - C(18)	110,3
N(2)-Si(2)-C(4)	108,5	C(16)–Si(6)–C(17)	106,6
N(2)-Si(2)-C(5)	114,2	C(17)-Si(6)-C(18)	108,3
N(2)-Si(2)-C(6)	110,9	C(18)-Si(6)-C(16)	108,9

paar des sp^2 -hybridisierten Stickstoffs am freien p-Orbital des ebenfalls sp^2 -hybridisierten Bors anteilig werden lässt. Man ist vielmehr gezwungen, eine π -Wechselwirkung über den Ring selbst unter Annahme von B-B-Bindungsanteilen zu formulieren. Für die letzteren spricht auch die Kürze des B...B-Abstandes (1,92 Å), der etwa demjenigen in den μ -Aminodiboranen (1,92 und 1,93 Å, Hedberg & Stosick, 1952) entspricht und durchaus mit den B-B-Bindungen in polyedrischen Boranen verglichen werden kann, die B-B- Abstände zwischen 1,60 und 2,07 Å aufweisen (vgl. Lipscomb, 1963).

Die mittlere Si-N-Bindungslänge 1,747 Å steht in guter Übereinstimmung mit bisher bekannten Werten. Solche sind röntgenographisch am Tetramethyl-NN'bistrimethylsilyl-cyclodisilazan zu 1,718 (0,04) Å (Wheatley, 1962), am Octamethyl-cyclotetrasilazan zu 1,728 (0,010) Å (Smith & Alexander, 1963) und am Si₂N₂O zu 1,72 (0,015) Å (Idrestedt & Brosset, 1964) bestimmt worden und durch Elektronenbeugung am Trisilylamin zu 1,738 (0,02) Å (Hedberg, 1955) und am Hexamethyl-cyclotrisilazan zu 1,78 (0,03) Å (Yokoi & Yamasahi, 1953). Da bei allen genannten Verbindungen die N-Atome zumindest annähernd planare Koordination haben, dürften sämtliche Si-N-Bindungen π -Bindungsanteile enthalten.

Die Si-C-Bindungslängen schwanken etwas. Die Abweichung im einzelnen beträgt bis zum Zweieinhalbfachen der Standardabweichung. Es ist jedoch kaum anzunehmen, dass die Unterschiede reell sind. Vielmehr fallen Fehler in den Messdaten bei diesen mit hohen Temperaturfaktoren ausgestatteten Atomen besonders stark ins Gewicht. Der Mittelwert der Si-C-Bindungslänge (1,869 Å) steht ebenfalls in guter Übereinstimmung mit den Literaturwerten. Als solche seien angeführt: die bereits oben erwähnten Verbindungen Tetramethyl-NN'-bistrimethylsilyl-cyclodisilazan mit 1,876 (0,04) Å und das Octamethyl-cyclotetrasilazan mit 1,88 (0,018) Å, ferner das dimere Dibrom-trimethylsiloxyaluminium mit 1,86 (0,06) Å (Bonamico, 1966*a*), ein weiteres Aluminosiloxan der Zusammensetzung Me₈Al₃Br₅O₆Si₄ mit 1,90 (0,036) Å (Bonamico, 1966*b*) und das Okta(methylsilsesquioxan) mit 1,985 (0,04) Å (Larsson, 1960).

Die Moleküle sind im Kristall in Schichten parallel der Ebene (010) in Wechsellagerung (Gleitspiegelebene a) angeordnet. Die Ringebene ist dabei annähernd parallel zu dieser Ebene ausgerichtet. Die Verbindung der einzelnen Schichten erfolgt durch Schraubenachsen 2_1 bzw. Symmetriezentren (vgl. Fig. 3 und 4).

Der Verfasser ist folgenden Personen und Institutionen zu Dank verpflichtet: Herrn Professor Dr Dr E.h.J.Goubeau für sein Interesse und die Förderung

Fig. 3. Kristallstruktur, Projektion auf (001).

Fig. 4. Kristallstruktur, Projektion auf (010).

mit Institutsmitteln, Herrn Dr P. Geymeyer für die Überlassung einer Substanzprobe, Herrn Professor Dr E. Hellner und Herrn Dr H. Burzlaff für die Messungen am automatischen Diffraktometer des Mineralogischen Instituts der Universität Marburg, dem Recheninstitut der Universität Stuttgart (Direktor Professor Dr W. Knödel) für die Gewährung von Rechenzeit für die umfangreichen Rechnungen, und der Deutschen Forschungsmeinschaft und dem Fonds der Chemischen Industrie für die Überlassung von Geräten.

Literatur

BONAMICO, M. (1966a). Chem. Comm. p. 24.

BONAMICO, M. (1966b). Chem. Comm. p. 135.

GEYMAYER, P., ROCHOW, E. G. & WANNAGAT, U. (1964). Angew. Chem. 76, 499.

- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HEDBERG, K. (1955). J. Amer. Chem. Soc. 77, 6491.
- HEDBERG, K. & STOSICK, A. (1952). J. Amer. Chem. Soc. 74, 952.
- IDRESTEDT, I. & BROSSET, C. (1964). Acta Chem. Scand. 18, 1879.
- LARSSON, K. (1960). Ark. Kemi, 16, 203.
- LIPSCOMB, W. N. (1963). Boron Hydrides. New York: W. A. Benjamin.
- RUSS, C. R. & MCDIARMID, A. G. (1964). Angew. Chem. 76, 500.
- SMITH, G. S. & ALEXANDER, L. E. (1963). Acta Cryst. 16, 1015.
- WHEATLEY, P. J. (1962). J. Chem. Soc. p. 1721.
- YOKOI, M. & YAMASAHI, K. (1953). J. Amer. Chem. Soc. 75, 4139.

Acta Cryst. (1969). B25, 2349

The Crystal and Molecular Structure of 7-Chloro-1,2-benzoisothiazolin-3-one

BY LUIGI CAVALCA, GIOVANNA FAVA GASPARRI, ALESSANDRO MANGIA AND GIANCARLO PELIZZI Istituto di Chimica Fisica, Università degli Studi, Parma, Italy

(Received 29 July 1968 and in revised form 17 February 1969)

The crystal structure of 7-chloro-1,2-benzoisothiazolin-3-one has been determined by three-dimensional X-ray analysis. There are four formula units, C_7H_4NOSCI , in the orthorhombic unit cell, a = 23.78 (2), b = 7.96 (2), c = 3.859 (4) Å, space group $P2_12_12_1$. In each molecule the benzene and isothiazole rings are planar and their planes are nearly coincident, the dihedral angle being 179.3° . Steric hindrance between Cl and S is probably responsible for the distortion of the molecule and for the lack of biological activity in the compound. Packing is determined by $C1 \cdots C1$ van der Waals contacts and by $NH \cdots O$ hydrogen bonds.

Introduction

The investigation of the crystal structure of 7-chloro-1,2-benzoisothiazolin-3-one was undertaken as a part of a programme of study of the molecular structure of a series of antifungal compounds containing the isothiazole ring,* structural information being important in order to correlate the biological activity with the structure of these compounds. Chemical and biological studies (Gialdi, Ponci & Caccialanza, 1964; Ponci, Vitali, Mossini & Amoretti, 1967) have shown that in this series the antifungal activity is strongly reduced when the 7-position is occupied by any substituent and in accordance with this the compound described in the present paper is practically inactive.

A short preliminary account of this structure has already been given (Cavalca, Fava Gasparri, Mangia & Pelizzi, 1968).

Experimental

7-Chloro-1,2-benzoisothiazolin-3-one occurs as very slender colourless orthorhombic needles elongated along [001]. Cell constants, determined from Weissenberg and rotation photographs taken around the elongation axis (Cu $K\alpha$, $\lambda = 1.5418$ Å), are as follows (standard deviations given in parentheses are in units of the last decimal figure):

C₇H₄NOSCl, M = 185.6; a = 23.78 (2), b = 7.96 (2), c = 3.859 (4) Å; V = 730.5 Å³, Z = 4, $D_x = 1.69$ g.cm⁻³ $\mu = 66.1$ cm⁻¹ (Cu K α), F(000) = 376.

Space group: $P2_12_12_1$ (from systematic absences and structure analysis).

Three-dimensional intensity data were determined photometrically on integrated and non-integrated equiinclination Weissenberg photographs taken around [001] up to the third layer (multiple-film technique, Cu $K\alpha$); 657 independent reflexions were observed out of a possible 900. By collecting data along the short

^{*} This research is carried out in collaboration with the Istituto di Chimica Farmaceutica della Università di Parma.